OPTIMAL EXECUTION IN A GENERAL ONE-SIDED LIMIT-ORDER BOOK

Predoiu, Shaikhet & Shreve (2010)

羅名志 / NYCU IMF

Part 1

basic models, problem specification

Outline

- introduction
- basic model
- problem specification
 - Theorem 3.1
 - Theorem 3.2

Introduction

- consider optimal execution over a fixed time interval of a large asset purchase in the face of a one-sided limit-order book
- assume the ask price (best ask price) is a continuous martingale with two adjustments :
 - orders consume a part of the limit-order book, and this increase the ask price for subsequent orders
 - resilience in the limit-order book causes the effect of these prior orders to decay over time
- there is **no permanent effect** from the purchase we model, but the temporary effect requires infinite time to completely disappear.

Introduction

 show that the optimal execution strategy consists of three lump purchases, and between these lump purchase, the optimal strategy purchases at a constant rate matched to the limit-order book recovery rate (its resilience), so that the ask price minus its martingale component remains constant (section 4)

Review

 Bertsimas & Lo (1998) : Trade on discrete time with permanent / temporary linear price impact, and calculate strategy by using dynamic programming.

 $Min E[\sum_{t=1}^{T} P_t S_t], \quad P_t = P_{t-1} + \theta S_t + \varepsilon_t, \quad V_t(P_{t-1}, W_t) = Min E_t[P_t S_t + V_{t+1}(P_t, W_{t+1})]$

 Almgren & Chriss (2000) : Trade on discrete time with permanent / temporary linear price impact. Take variance of cost function into account (risk aversion).

$$\begin{split} \min_{x} \left(E(x) + \lambda V(x) \right) \\ S_{k} = S_{k-1} + \sigma \tau^{1/2} \xi_{k} - \tau g\left(\frac{n_{k}}{\tau}\right) \to \tilde{S}_{k} = S_{k-1} - h\left(\frac{n_{k}}{\tau}\right) \\ \frac{\partial U}{\partial x_{j}} \to x_{j} = \frac{\sinh\left(\kappa(T - t_{j})\right)}{\sinh(\kappa T)} X \end{split}$$

Review

 Obizhaeva & Wang (2005) : price impact of trade will change security's supply and demand (limit-order book, resilience), and the optimal strategy involves both discrete and continuous trades.

Proposition 3
$$J_t = (F_t + s/2)X_t + \lambda X_0 X_t + \alpha_t X_t^2 + \beta_t D_t + \gamma_t D_t^2$$

 $D_t = A_t - V_t - s/2$
 $x_0 = x_T = \frac{X_0}{\rho T + 2}, \quad \mu_t = \frac{\rho X_0}{\rho T + 2} \quad \forall \ t \in (0, \ T)$

• Alfonsi, Fruth and Schied (2010) : based on Obizhaeva & Wang, with more general shape of limit order book.

Basic Model

Section 2

Basic model

- T : total trading time , $0 \leq t \leq T$
- \overline{X} : total trading volume
- X_t : cumulative purchase up to time t
 - $X_{0-} = 0$, $X_T = \overline{X}$ (nondecreasing, **right continuous**)
- A_t: best ask price in the absence of our trade, which is also continuous nonnegative martingale.

Basic model

- μ : The shadow order book to the right of A(t), which represent the distribution of sell order
 - M is some extended positive real number
 - if B is a measurable subset of [0,M), then at time $t \ge 0$ the number of limit orders with prices in B+ $A_t \triangleq \{b + A_t; b \in B\}$ is $\mu(B)$
- F(x) : shadow limit-order book, which is **left-continuous** cumulative distribution function
 - $F(x) \triangleq \mu([0, x)), x \ge 0$:
- h(x) : resilience function. Defined on [0, ∞) with h(0)=0, and is strictly increasing and locally Lipschitz

• h(0) = 0, h(
$$\infty$$
) $\triangleq \lim_{x \to \infty} h(x) > \frac{\overline{x}}{T}$

Basic model

- *E_t* : residual effect process, which is a unique nonnegative **rightcontinuous** finite-variation adapted process E satisfying :
 - $E_t = X_t \int_0^t h(E_s) ds$, $0 \le t \le T$
 - $E_{0-} = 0$, $\Delta X_t = \Delta E_t$
- $\Psi(y)$: left continuous inverse of F
 - $\Psi(y) \triangleq \sup\{x \ge 0 \mid F(x) < y\}$, y>0
 - $\Psi(0) \triangleq \Psi(0+)=0$ ('.' F(x) > 0 for every x>0)

- Ask price in the presence of large investor is defined to be $A_t + D_t$, where :
 - $D_t \triangleq \Psi(E_t)$, $0 \le t \le T$

Cost function

suppose $A_t \equiv 0$, and no purchase have been made before :

• The cost of purchasing all shares at prices in [0,x) :

• $\rho(x) \triangleq \int_{[0,x)} \xi dF(\xi), \ x \ge 0$

- The cost of purchasing y shares is :
 - $\phi(y) \triangleq \rho(\Psi(y)) + [y F(\Psi(y))]\Psi(y), \quad y \ge 0 \text{ and } \phi(0) = 0$
 - first term : purchasing all shares in the interval [0,x)
 - second term : lump purchase at price $\Psi(y)$

Example 2 (Modified block order book)

• F(x) =
$$\begin{cases} x, & 0 \le x \le a \\ a, & a \le x \le b \\ x - (b - a), & b \le x < \infty \end{cases}$$

•
$$\Psi(\mathbf{y}) = \begin{cases} y, & 0 \le y \le a \\ y+b-a, & a < y < \infty \end{cases}$$

• $F(\Psi(y)) = y$ for all $y \ge 0$

Example 2 (Modified block order book) $\phi(y) = \rho(\Psi(y)) + [y - F(\Psi(y))]\Psi(y)$

•
$$\rho(\mathbf{x}) = \begin{cases} \frac{1}{2}x^2, & 0 \le x \le a \\ \frac{1}{2}a^2 & a \le x \le b \\ \frac{1}{2}(x^2 + a^2 - b^2), & b \le x < \infty \end{cases}$$

•
$$\phi(y) = \begin{cases} \frac{1}{2}y^2, & 0 \le y \le a \\ \frac{1}{2}((y+b-a)^2 + a^2 - b^2), & a \le y < \infty \end{cases}$$

• $\phi(y)$ is convex with subdifferential :

$$\bullet \ \partial \phi(y) = \begin{cases} \{y\}, & 0 \le y < a \\ [a,b], & y = a \\ \{y+b-a\}, & a < y < \infty \end{cases}$$

 $\rho(x) \triangleq$

[0, x)

 $\xi dF(\xi)$,

 $\mathbf{x} \geq \mathbf{0}$

Example 3 (Discrete order book)

density

- $F(x) = \sum_{i=0}^{\infty} I_{(i,\infty)}(x), \quad x \ge 0$
- $\Psi(\mathbf{y}) = \sum_{i=1}^{\infty} I_{(i,\infty)}(\mathbf{y}), \quad \mathbf{y} \ge 0$
- where F(j) = j, F(j+) = j+1, $\Psi(j+1) = j$, $\Psi(j+) = j$
- $F(\Psi(j)+) = j, \Psi(F(j)+) = j$
- for $k \ge 1$ and $k < y \le k + 1$, $\Psi(y)=k$

 $\rho(x) \triangleq \int_{[0,x)} \xi dF(\xi), \quad x \ge 0$

Example 3 (Discrete order book)

$$\phi(y) \triangleq \rho(\Psi(\mathbf{y})) + [y - F(\Psi(\mathbf{y}))]\Psi(\mathbf{y})$$

- $\rho(x) = \sum_{i=0}^{\infty} i I_{(i,\infty)}(x)$
 - in particular, $\rho(0) = 0$
 - and for integers $k \ge 1$ and $k 1 < x \le k$, $\rho(x) = \sum_{i=0}^{k-1} i = \frac{k(k-1)}{2}$
- $\phi(y) = \rho(\Psi(y)) + [y F(\Psi(y))]\Psi(y)$
 - $\rho(\Psi(y)) = \frac{k(k-1)}{2}$ (for $k < y \le k+1$, $\Psi(y) = k$)
 - lump purchase : $[y F(\Psi(y))]\Psi(y) = k(y-k)$
 - we get : $\phi(y) = \sum_{k=1}^{\infty} k \left(y \frac{1}{2}k \frac{1}{2} \right) I_{(k,k+1]}(y)$
- ϕ is convex, with differential :
 - $\partial \phi(y) = [\Psi(y), \Psi(y+)]$, for all $y \ge 0$
 - $\phi'(y) = \Psi(y) = k$, for all $y \ge 0$

 $\phi(y) \triangleq \rho(\Psi(y)) + [y - F(\Psi(y))]\Psi(y)$

Define Cost & strategy

$$E_t = X_t - \int_0^t h(E_s) ds,$$

- decompose strategy X into its continuous and pure jump parts :
 - $X_t = X_t^c + \sum_{0 \le s \le t} \Delta X_s$
- investor pays price $A_t D_t$ for infinitesimal purchase at time t
 - total cost of these purchase : $\int_0^T (A_t + D_t) dX_t^c$
- for lump purchase :
 - $\Delta X_t = \Delta E_t$
 - cost of purchase $\Delta X_t : A_t \Delta X_t + \phi(E_t) \phi(E_{t-})$
- total cost function :

•
$$C(X) = \int_0^T (A_t + D_t) dX_t^c + \sum_{0 \le t \le T} [A_t \Delta X_t + \phi(E_t) - \phi(E_{t-})]$$

$$= \int_0^T (D_t) dX_t^c + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] + \int_{[0,T]} A_t dX_t$$

Our Goal is to determine strategy X that minimizes E [C(X)]

Problem simplifications

Section 3 (Rewrite cost function)

Rewrite cost function

• $C(X) = \int_0^T (A_t + D_t) dX_t^c + \sum_{0 \le t \le T} [A_t \Delta X_t + \phi(E_t) - \phi(E_{t-})]$

$$= \int_0^T (D_t) dX_t^c + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] + \int_{[0,T]} A_t dX_t$$

- By integration by parts :
 - $\int_{[0,T]} A_t \, dX_t = (A_t X_t |_0^T) \int_0^T (X_t) dA_t = A_T X_T A_0 X_0 \int_0^T (X_t) dA_t$ • and $\because \mathbf{E} (\int_0^T (X_t) dA_t) = \mathbf{0}$ (martingale), $\mathbf{E} (A_T X_T) = \overline{X} A_0$, $\mathbf{E} (A_0 X_0) = \mathbf{0}$
 - and $\therefore \mathbf{E}\left(\int_0^T (X_t) dA_t\right) = \mathbf{0}$ (martingale), $\mathbf{E}\left(A_T X_T\right) = \overline{X}A_0$, $\mathbf{E}(A_0 X_0) = \mathbf{0}$ $\therefore \mathbf{EC}(\mathbf{X}) = \int_0^T (D_t) dX_t^c + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] + \overline{X}A_0$
- minimization of C(X) is equal to min $\left(\int_0^T (D_t) dX_t^c + \sum_{0 \le t \le T} \left[\phi(E_t) \phi(E_{t-}) \right] \right)$
- 2 theorems for minimization problem simplification

$$C(X) = \int_{0}^{T} (A_{t} + D_{t}) dX_{t}^{c} + \sum_{0 \le t \le T} [A_{t} \Delta X_{t} + \phi(E_{t}) - \phi(E_{t-})]$$
$$= \int_{0}^{T} (D_{t}) dX_{t}^{c} + \sum_{0 \le t \le T} [\phi(E_{t}) - \phi(E_{t-})] + \int_{[0,T]} A_{t} dX_{t}$$

• do not allow the agent to make intermediate sells in order to achieve the ultimate \overline{X} shares, because doing so would not decrease the cost

• proof :

suppose the agent has strategy Y, which is non-decreasing right-continuous adapted process with $Y_{0-} = 0$, $X_T - Y_T = \overline{X}$ (didn't modeled the limit buy order book) :

$$\mathsf{C}(\mathsf{X},\mathsf{Y}) \ge \int_0^T (D_t) \, dX_t^c + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] \, + \int_{[0,T]} A_t \, dX_t - \int_{[0,T]} A_t \, dY_t$$

Theorem 3.1

• with both buy / sell strategy :

 $C(X,Y) \ge \int_0^T (D_t) \, dX_t^c + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] \, + \int_{[0,T]} A_t \, dX_t - \int_{[0,T]} A_t \, dY_t$

- By integration by parts :
 - $\int_{[0,T]} A_t dX_t \int_{[0,T]} A_t dY_t = A_T (X_T Y_T) A_0 (X_{0-} Y_{0-}) \int_0^T (X_t Y_t) dA_t$
 - and $\operatorname{E}(\int_0^T (X_t Y_t) dA_t) = 0$ (martingale), so $\operatorname{EC}(X,Y) \ge E \int_0^T (D_t) dX_t^c + E \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] + \overline{X}A_0 \ge EC(X)$

Theorem 3.2

- Assume without loss of generality that $A_t \equiv 0$, the cost of using strategy X_t , $0 \le t \le T$: $C(X) = \int_0^T (D_t) dX_t^c + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})] = \phi(E_T) + \int_0^T D_t h(E_t) dt$
- proof.

• step 1 :
$$\partial \phi(y) = [\Psi(y), \Psi(y+)]$$

• step 2:
$$\phi(E_T) = \int_0^T D_t dX_t^c - \int_0^T D_t h(E_t) dt + \sum_{0 \le t \le T} [\phi(E_t) - \phi(E_{t-})]$$

Part 2

Strategy solution, Conclusion

Outline

- Strategy solution
 - Type A strategy
 - Type B strategy
- Conclusion

Strategy

Type A & Type B

$$E_t = X_t - \int_0^t h(E_s) ds, \qquad 0 \le t \le T$$

$\Psi(y)$: left continuous inverse of F

Optimization Problem

- Goal : minimize the expected cost $\phi(E_T) + \int_0^T D_t h(E_t) dt$
- Two solution :
 - Type B (the optimal one):

 $X_0 = E_0$, then buys $dX_t = h(E_0)dt$ up to time t_0 , then buys another lump at time t_0 , subsequently trades again at a constant rate $dX_t = h(E_{t0})dt$ until time T, and finally buy the remaining shares at T.

• Type A (special case of Type B):

if $g(y) \triangleq y \Psi(h^{-1}(y))$ is convex, then there exists a Type A purchasing strategy that minimizes C(X) over all purchasing strategies X, where the purchase at time t₀ consists of 0 shares.

Type A Strategy

- Goal : minimize the expected cost $\phi(E_T) + \int_0^T D_t h(E_t) dt$
 - Type A (special case of Type B):
 - if g(y) ≜ yΨ(h⁻¹(y)) is convex, then there exists a Type A purchasing strategy that minimizes C(X) over all purchasing strategies X, where the purchase at time t₀ consists of 0 shares.
 - the cost strategy can be rewrite :
 - $C(X) = \phi(E_T) + \int_0^T D_t h(E_t) dt = \phi(E_T) + \int_0^T g(h(E_t)) dt$, where $g(y) \triangleq y \Psi(h^{-1}(y))$

•
$$C(X^A) = \phi(E_T^A) + Tg\left(h(X_0^A)\right) = \phi(E_T^A) + Tg\left(h\left(h^{-1}\left(\frac{\bar{X} - E_T^A}{T}\right)\right)\right) = \phi(E_T^A) + Tg\left(\frac{\bar{X} - E_T^A}{T}\right)$$

• only when g is convex, we can use Jensen's inequality to prove :

•
$$\phi(E_T) + \int_0^T g(h(E_t)) dt \ge \phi(E_T) + Tg\left(\frac{\bar{x} - E_T}{T}\right)$$

- define G(e) = $\phi(e) + Tg\left(\frac{\overline{X}-e}{T}\right)$, we can find the $e^*(E_T^A)$ that minimize G
 - $X_0^A = h^{-1}(\frac{\bar{X} E_T^A}{T})$
 - purchase continuously with rate $h(X_0^A)$
 - $X_T^A = \overline{X} X_0^A h(X_0^A)T$

Type B strategy

- In the absence of the assumption that g is convex, there exists a Type B purchasing strategy that minimizes C(X) over all purchasing strategies X.
- define **convex hull of g**, defined by :
 - $\hat{g}(y) \triangleq \sup\{l(y): l \text{ is an affine function and } l(\eta) \leq g(\eta) \forall \eta \in [0, \overline{Y}]\}$
 - $\hat{g}(0) = g(0) = 0$, $\hat{g}(\overline{Y}) = g(\overline{Y})$
 - if $y^* \in (0, \overline{Y})$ which satisfies $\hat{g}(y^*) < g(y^*)$, then exists unique l below g
 - $0 \le \alpha < y^* < \beta \le \overline{Y}$: $|(\alpha) = \hat{g}(\alpha) = g(\alpha), |(\beta) = \hat{g}(\beta) = g(\beta)$ $|(y) = \hat{g}(y) < g(y), \ \alpha < y < \beta$

(prove in Appendix C)

$C(X) = \phi(E_T) + \int_0^T g(h(E_t))dt$

Type B strategy

- $\hat{C}(X) \triangleq \phi(E_T) + \int_0^T \hat{g}(h(E_t)) dt$
- we obviously have $\hat{C}(X) \leq C(X)$
- By Jensen's Inequality (12_20 pg, 14) :

•
$$\hat{C}(X) \ge \phi(E_T) + T\hat{g}\left(\frac{\bar{X} - E_T}{T}\right)$$

• This lead us to consider minimization of the function \hat{G} :

•
$$\hat{G}(e) = \phi(e) + T\hat{g}\left(\frac{\bar{X}-e}{T}\right)$$

• prove that :

•
$$C(X^B) = \widehat{G}(e^*)$$

Type B strategy

$$C(X) = \phi(E_T) + \int_0^T g(h(E_t))dt$$
$$\hat{C}(X) \triangleq \phi(E_T) + \int_0^T \hat{g}(h(E_t))dt$$
$$g(y) \triangleq y \Psi(h^{-1}(y))$$

•
$$C(X^B) = \hat{G}(e^*) = \phi(e^*) + T\hat{g}\left(\frac{\bar{X}-e^*}{T}\right)$$
, the lower bond of \hat{C} and C
• $y^* = \frac{\bar{X}-e^*}{T}$, $x^* = h^{-1}(y^*) = X_0^A$ (12_20 pg.12)

- discuss 2 cases :
 - case 1 : y* satisfy $\hat{g}(y^*) = g(y^*)$, can be regarded as Type A
 - case 2 : y* satisfy $\hat{g}(y^*) < g(y^*)$

Case 1 of Type B ($\hat{g}(y*) = g(y*)$)

recall Type A strategy :

- define the range of E_T^A :
 - $k(x) \triangleq x + h(x)T$ (total trade volume before last lump purchase ΔX_T^A)
 - there exists a unique $\overline{e} \in (0, \overline{X})$ such that $k(\overline{e}) = \overline{X}$
 - therefore, feasible strategy of Type A : $0 \le X_0^A \le \bar{e}$
 - $\therefore E_T^A = \overline{X} h(X_0^A)T, \therefore \overline{e} \le E_T^A \le \overline{X}$
- the minimization problem we consider :

• G(e) =
$$\phi(e) + Tg(\frac{\overline{X}-e}{T})$$

- therefore, the minimum of convex function G over[0, \overline{X}] is obtained in $[\overline{e}, \overline{X}]$
- but here $\hat{g}(\bar{e}) \leq g(\bar{e})$, so we need to prove $e^* \geq \bar{e}$

Case 1 of Type B

- case $x^* = 0$:
 - $y^* = 0$, $e^* = \overline{X}$
- case $x^* > 0$:
 - subcase $0 < x^* \le F(0+)$ (1/17_pg. 19-20)
 - subcase $x^* > F(0+) (1/17_pg. 21-22)$
- conclusion:
 - when $\hat{g}(y*) = g(y*)$, we can use the Type A strategy
 - with $X_0^A = x^*$ and $E_T^A = e^*$

$$y^* = \frac{\overline{X} - e^*}{T}, \ x^* = h^{-1}(y^*)$$
$$k(x) \triangleq x + h(x)T$$
$$k(\overline{e}) = \overline{X}$$
$$\widehat{G}(e) = \phi(e) + T\widehat{g}\left(\frac{\overline{X} - e}{T}\right)$$

$$E_t = X_t - \int_0^t h(E_s) ds,$$

Case 2 of Type B

- $\hat{g}(y^*) < g(y^*)$
- define $t_0 \in (0,T)$ by $t_0 = \frac{(\beta y^*)T}{\beta \alpha}$
 - so that $\alpha t_0 + \beta (T t_0) = y^* T$
- consider the Type B strategy that :
 - makes an initial strategy $X_0^B = h^{-1}(\alpha)$
 - then purchase at rate $dX_t^B = \alpha dt$, for $0 \le t < t_0$ $(\mathbf{E}_t^B = \mathbf{h}^{-1}(\alpha))$
 - follow with the purchase $\Delta X_{t0}^B = h^{-1}(\beta) h^{-1}(\alpha)$ at time t_0
 - then purchase at rate $dX_t^B = \beta dt$, for $t_0 \le t < T(\mathbf{E}_t^B = \mathbf{h}^{-1}(\boldsymbol{\beta}))$
 - final lump purchase $\overline{X} X_{T-}^{\beta}$ at time T
- we will show that X^B is the optimal strategy $h^{-1}(\alpha)$

$$t_0 = \frac{(\beta - y^*)T}{\beta - \alpha} \rightarrow \alpha t_0 + \beta (T - t_0) = y^*T$$

$$y^* = \frac{\overline{X} - e^*}{T}$$

• 2 parts of the proof

•
$$X^{B}$$
 is optimal with : $X_{t}^{B} = \begin{cases} h^{-1}(\alpha) + \alpha t, & 0 \le t < t_{0}, \\ h^{-1}(\beta) + \alpha t_{0} + \beta(t - t_{0}), & t_{0} \le t < T \\ \overline{X}, & t = T \end{cases}$

•
$$\Delta X_T^B = \overline{X} - h^{-1}(\beta) - \alpha t_0 - \beta (t - t_0)$$
$$= \overline{X} - h^{-1}(\beta) - y^* T$$
$$= e^* - h^{-1}(\beta)$$
also need to prove $h^{-1}(\beta) \le e^*$

$C(X) = \phi(E_T) + \int_0^T g(h(E_t))dt$

$X^{B}% ^{B}\left(x,y\right) =0$ is optimal

- $\hat{C}(X) \triangleq \phi(E_T) + \int_0^T \hat{g}(h(E_t)) dt$
- we obviously have $\hat{C}(X) \leq C(X)$
- By Jensen's Inequality (12_20 pg, 14) :

•
$$\hat{C}(X) \ge \phi(E_T) + T\hat{g}\left(\frac{\bar{X} - E_T}{T}\right)$$

• This lead us to consider minimization of the function \hat{G} :

•
$$\hat{G}(e) = \phi(e) + T\hat{g}\left(\frac{\bar{X}-e}{T}\right)$$

• prove that :

•
$$C(X^B) = \widehat{G}(e^*)$$

X^B is optimal

•
$$E_T^B = E_{T-}^B + \Delta E_T^B = h^{-1}(\beta) + \Delta X_T^B = e^*$$

• $C(X^B) = \phi(E_T^B) + \int_0^T g(h(E_t^B)) dt$
 $= \phi(e^*) + g(\alpha)t_0 + g(\beta)(T - t_0)$
 $= \phi(e^*) + l(\alpha)t_0 + l(\beta)(T - t_0)$
 $= \phi(e^*) + Tl(\frac{\alpha t_0 + \beta(T - t_0)}{T})$
 $= \phi(e^*) + Tl(y^*)$
 $= \phi(e^*) + T\hat{g}(y^*)$
 $= \hat{G}(e^*)$
 $(\alpha + \beta)(T - t_0)$
 $(\beta + \beta)(T - t_0)$

$$\Delta X_T^B = \overline{X} - h^{-1}(\beta) - \alpha t_0 - \beta (t - t_0)$$

= $\overline{X} - h^{-1}(\beta) - y^* T$
= $e^* - h^{-1}(\beta)$
$$t_0 = \frac{(\beta - y^*)T}{\beta - \alpha} \rightarrow \alpha t_0 + \beta (T - t_0) = y^* T$$

$$h^{-1}(\beta) \leq e^*$$

- for all $e \in (e^*, \overline{X})$, $D^+ \widehat{G}(e) > 0$
- assume e is greater than but sufficiently close to e*:
 - $\frac{\overline{x}-e}{T}$ is in (α, y^*) , $\because \hat{g}(y^*) < g(y^*)$ and $y^* = \frac{\overline{x}-e^*}{T}$ where \hat{g} is linear with slope $\frac{g(\beta)-g(\alpha)}{\beta-\alpha}$, $\because I(y) = \hat{g}(y) < g(y)$, $\alpha < y < \beta$
- proof :

$$0 < D^{+}\widehat{G}(e)$$

$$= D^{+}\Phi(e+) - D^{-}\widehat{g}(y)\Big|_{y=\frac{X-e}{T}}$$

$$= \psi(e+) - \frac{g(\beta) - g(\alpha)}{\beta - \alpha}$$

$$= \psi(e+) - \frac{\beta\psi(h^{-1}(\beta)) - \alpha\psi(h^{-1}(\alpha))}{\beta - \alpha}$$

$$\leq \psi(e+) - \frac{\beta\psi(h^{-1}(\beta)) - \alpha\psi(h^{-1}(\beta))}{\beta - \alpha}$$

$$= \psi(e+) - \psi(h^{-1}(\beta)).$$

 $g(y) \triangleq y \Psi(h^{-1}(y))$ $y^* = \frac{\overline{X} - e^*}{-}$ $\hat{G}(e) = \phi(e) + T\hat{g}\left(\frac{\overline{X} - e}{T}\right)$

• $\psi(e+) > \psi(h^{-1}(\beta))$ for all greater than but sufficiently close to e^* implies $h^{-1}(\beta) \le e^*$

Example

Discrete order book

Example 3 (Discrete order book)

density

- $F(x) = \sum_{i=0}^{\infty} I_{(i,\infty)}(x), \quad x \ge 0$
- $\Psi(\mathbf{y}) = \sum_{i=1}^{\infty} I_{(i,\infty)}(\mathbf{y}), \quad \mathbf{y} \ge 0$
- where F(j) = j, F(j+) = j+1, $\Psi(j+1) = j$, $\Psi(j+) = j$
- $F(\Psi(j)+) = j, \Psi(F(j)+) = j$
- for $k \geq 1$ and $k < y \leq k+1$, $\Psi(\textbf{y})\text{=} k$

 $\rho(x) \triangleq \int_{[0,x)} \xi dF(\xi), \quad x \ge 0$

 $\phi(y) \triangleq \rho(\Psi(\mathbf{y})) + [y - F(\Psi(\mathbf{y}))]\Psi(\mathbf{y})$

Example 3 (Discrete order book)

•
$$\rho(x) = \sum_{i=0}^{\infty} i I_{(i,\infty)}(x)$$

• in particular, $\rho(0) = 0$

• and for integers $k \ge 1$ and $k - 1 < x \le k$, $\rho(x) = \sum_{i=0}^{k-1} i = \frac{k(k-1)}{2}$

•
$$\varphi(y) = \rho(\Psi(y)) + [y - F(\Psi(y))]\Psi(y)$$

•
$$\rho(\Psi(y)) = \frac{k(k-1)}{2} (\Psi(y) = k, \text{ for } k < y \le k+1)$$

•
$$\text{lump purchase} : [y - F(\Psi(y))]\Psi(y) = k(y-k)$$

•
$$\text{we get} : \varphi(y) = \frac{k(k-1)}{2} + k(y-k)$$

- ϕ is convex, with differential :
 - $\partial \phi(y) = [\Psi(y), \Psi(y+)]$, for all $y \ge 0$
 - $\phi'(y) = \Psi(y) = k$, for all $y \ge 0$

Example of Type B (Discrete order book)

- In order to illustrate different cases of purchasing strategies, we assume :
 - h(x) = x and T = 1
- The function \hat{G} is minimized over to $[0, \overline{X}]$ at e^{*} if and only if :

•
$$\mathbf{0} \in \partial \widehat{G}(e^*) = \partial \phi(e^*) - \partial \widehat{g}(\overline{X} - e^*)$$

• which is equivalent to $\partial \phi(e^*) \cap \partial \hat{g}(\bar{X} - e^*) \neq \emptyset$ $\hat{G}(e) = \phi(e) + T \hat{g}\left(\frac{X - e}{T}\right)$

convex hull and affine function

1.

if $y^* \in (0, \overline{Y})$ which satisfies $\hat{g}(y^*) < g(y^*)$, then exists unique l below g : $0 \le \alpha < y^* < \beta \le \overline{Y}$ $|(\alpha) = \hat{g}(\alpha) = g(\alpha), |(\beta) = \hat{g}(\beta) = g(\beta)$ $|(\gamma) = \hat{g}(y) < g(\gamma), \ \alpha < y < \beta$ For $\alpha < y^* < \beta$, we have $\mathbf{l}(y^*) = \hat{g}(y^*) < g(y^*)$

2.

g(y) = ky, for integer $k \ge 0$ and $k < y \le k + 1$ in particular, g(k) = (k - 1)k

3.

The convex hull of g interpolates linearly between (k,(k-1)k)and (k+1,k(k+1)), i.e. $\hat{g}(y) = k(2y - (k + 1))$

$g(y) \triangleq y \Psi(h^{-1}(y))$ $\Psi(y) = \sum_{i=1}^{\infty} I_{(i,\infty)}(y)$

for $k \ge 1$ and $k < y \le k + 1$, $\Psi(y)$ = k

$\varphi(y) = \frac{k(k-1)}{2} + k(y-k) = k\left(y - \frac{1}{2}k - \frac{1}{2}\right)$ $\hat{g}(y) = k(2y - (k+1))$ $\hat{g}(y) = k(2y - (k+1))$

• find e* where $\partial \phi(e^*) \cap \partial \hat{g}(\bar{X} - e^*) \neq \emptyset$, and for integers $k \ge 0$:

•
$$\partial \phi(y) = \begin{cases} \{0\}, & y = 0\\ [k-1,k], & y = k\\ \{k\}, & k < y < k+1 \end{cases}$$

•
$$\partial \hat{g}(y) = \begin{cases} \{0\}, & y = 0\\ [2(k-1), 2k], & y = k\\ \{2k\}, & k < y < k+1 \end{cases}$$

$\hat{G}(e) = \phi(e) + T\hat{g}\left(\frac{\overline{X}-e}{T}\right)$

Example of Type B (Discrete order book)

- we assume :
 - h(x) = x
 - T = 1
- we define k*to be the largest integer less than or equal to $\frac{X}{2}$, so that :
 - $3k^* \leq \overline{X} < 3k^* + 3$
- we divide the analysis into three cases:
 - Case A : $3k^* \le \overline{X} < 3k^* + 1$
 - Case B : $3k^* + 1 \le \overline{X} < 3k^* + 2$

$$\hat{G}(e) = \phi(e) + T\hat{g}\left(\frac{\bar{X}-e}{T}\right)$$

Case A

- Case A : $3k^* \le \overline{X} < 3k^* + 1$
- we define $e^* = \overline{X} k^*$, so that $2k^* \le e^* < 2k^* + 1$ and $k^* = \overline{X} e^*$
- then :
 - $\partial \phi(e^*) \ni 2k^*$
 - $\partial \hat{g}(\bar{X} e^*) = [2(k^* 1), 2k^*]$
- so the intersection of $\partial \phi(e^*)$ and $\partial \hat{g}(\overline{X} e^*)$ is nonempty, as desired, with $e^* = \overline{X} - k^*$ $\partial \phi(y) = \begin{cases} \{0\}, & y = 0 \\ [k-1,k], & y = k \\ \{k\}, & k < y < k + 1 \end{cases}$

$$\partial \hat{g}(y) = \begin{cases} \{0\}, & y = 0\\ [2(k-1), 2k], & y = k\\ \{2k\}, & k < y < k+1 \end{cases}$$

Case A

- we have $e^* = \overline{X} k^*$
 - $x^* = y^* = k^*$ (an integer)
 - $\hat{g}(y^*) = g(y^*)$, which is Type A strategy
- two cases:
 - if k* = 0, first subcase of Case1 (x<F(0+)):
 - x* = k* = 0, initial lump purchase : 0 shares
 - do nothing until time T
 - with final lump purchase T : \overline{X}
 - if k* > 0:
 - x* = k* > 0, initial lump purchase : k* shares
 - purchase continuously at rate k* in (0,T), to keep $E_t = k^*$ and $D_t = \Psi(E_t) = k^*-1$
 - with final lump purchase T : $\overline{X} 2k^*$

$$y^* = \frac{\overline{X} - e^*}{T}$$
$$x^* = h^{-1}(y^*) = X_0^A$$
$$E_t = X_t - \int_0^t h(E_s) ds,$$

$$\hat{G}(e) = \phi(e) + T\hat{g}\left(\frac{\bar{X}-e}{T}\right)$$

Case B

- Case B : $3k^* + 1 \le \overline{X} < 3k^* + 2$
- we define $e^* = 2k^* + 1$, so that $k^* < \overline{X} e^* < k^* + 1$
- then :

•
$$\partial \phi(\mathbf{e}^*) = [2k^*, 2k^* + 1]$$

- $\partial \hat{g}(X e^*) \ni 2k^*$
- so the intersection of $\partial \phi(e^*)$ and $\partial \hat{g}(\overline{X} e^*)$ is nonempty, as desired, with $e^* = 2k^* + 1$ $\partial \phi(y) = \begin{cases} \{0\}, & y = 0\\ [k-1,k], & y = k\\ \{k\}, & k < y < k + 1 \end{cases}$

$$\partial \hat{g}(y) = \begin{cases} \{0\}, & y = 0\\ [2(k-1), 2k], & y = k\\ \{2k\}, & k < y < k+1 \end{cases}$$

Case B

$$y^* = \frac{\overline{X} - e^*}{T}$$

$$x^* = h^{-1}(y^*) = X_0^A$$

$$E_t = X_t - \int_0^t h(E_s) ds,$$

$$\Psi(y) = \sum_{i=1}^\infty I_{(i,\infty)}(y)$$

- we have $e^* = 2k^* + 1$
 - $x^* = y^* = \bar{X} e^*$
 - $k^* \leq y^* < k^* + 1$, so $\hat{g}(y^*) < g(y^*)$, which is Type B strategy
- By Type B strategy, we have :
 - $\alpha = k^*$

•
$$\beta = k^* + 1$$

• $t_0 = \frac{(\beta - y^*)T}{\beta - \alpha} = (\beta - y^*) = k^* + 1 - \overline{X} - e^* = 3k^* + 2 - \overline{X}$

- the strategy :
 - initial lump purchase : $X_0^B = h^{-1}(\alpha) = k^*$
 - purchases continuously at rate k* in (0, t_0), ($E_t = k^*$ and $D_t = \Psi(E_t) = k^* 1$)
 - intermediate lump purchase : $\Delta X_{t0}^B = h^{-1}(\beta) h^{-1}(\alpha) = \beta \alpha = 1$
 - purchases continuously at rate k*+1 in (t_0 ,1), ($E_t = k^* + 1$ and $D_t = \Psi(E_t) = k^*$)
 - final lump purchase : $X_T^B = \mathbf{k}^*$

implementation

Adidas, 7/1 (simple)

Measure of LOB

• Adidas, 7/1, ask-side LOB (partial)

Ask2 Ask1 Ask3 Ask4 Ask5 Ask6 Ask7 Ask8 Ask9 Ask10 Ask11 Ask12 Ask13 Ask14 Ask15 Ask16 Ask17 Ask18 Ask19 Ask20 Date 32579015 3.94E+01 3.95E+01 3.95E+01 3.96E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.98E+01 3.98E+01 3.98E+01 3.99E+01 3.99E+01 3.99E+01 4.00E+01 4.00E+01 4.01E+01 4.01E+01 4.01E+01 32579017 3.94E+01 3.95E+01 3.96E+01 3.96E+01 3.96E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.98E+01 3.98E+01 3.98E+01 3.99E+01 3.99E+01 3.99E+01 4.00E+01 4.00E+01 4.01E+01 4.01E+01 32579021 3.94E+01 3.94E+01 3.95E+01 3.95E+01 3.96E+01 3.96E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.98E+01 3.98E+01 3.98E+01 3.99E+01 3.99E+01 3.99E+01 4.00E+01 4.00E+01 4.01E+01 32579070 3.94E+01 3.94E+01 3.96E+01 3.96E+01 3.96E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.98E+01 3.98E+01 3.98E+01 3.99E+01 3.99E+01 3.99E+01 3.99E+01 4.00E+01 4.00E+01 4.01E+01 4.01E+01 32579071 3.94E+01 3.94E+01 3.94E+01 3.96E+01 3.96E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.98E+01 3.98E+01 3.98E+01 3.99E+01 3.99E+01 3.99E+01 4.00E+01 4.00E+01 4.01E+01 4.01E+01 32579072 3.94E+01 3.94E+01 3.94E+01 3.96E+01 3.96E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.97E+01 3.98E+01 3.98E+01 3.98E+01 3.99E+01 3.99E+01 3.99E+01 4.00E+01 4.00E+01 4.01E+01

Date	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20
32579015	3174	3000	452	2000	731	483	205	373	469	1000	132	496	374	12	509	379	511	305	379	545
32579017	3174	3000	50	452	2000	731	483	205	373	469	1000	132	496	374	12	509	379	511	305	379
32579021	93	3174	3000	50	452	2000	731	483	205	373	469	1000	132	496	374	12	509	379	511	305
32579070	93	3174	50	452	2000	731	483	205	373	469	1000	132	496	374	12	509	379	511	305	379
32579071	93	3174	50	452	2000	731	483	205	373	469	1000	132	496	374	12	509	379	511	4908	379
32579072	93	3174	50	452	2000	731	483	2500	205	373	469	1000	132	496	374	12	509	379	511	4908

Measure of LOB

• Evolution of cumulative volume in LOB

Ask side evolution of cummulative volume in LOB Bid side evolution of cummulative volume in LOB

* only first 100 timestamps of 7/1

Measure of LOB

- observation
 - less market impact, less purchasing cost
- implementation
 - Adidas, 7/1, ask-side LOB
 - use "Discrete order book" (Example 3 in paper) as a simple example
 - fixed average volume with discrete price

implementation

- assume T = 1, h(x) = x
- A_{0-} = 3918 (39.18*100)
 - price (x) \rightarrow 100*price
 - 3918, 3919, 3920...
- density \sim 1167 (average volume of ask-side LOB)
 - volume (y, \overline{X}) \rightarrow volume/1167
- we assume :
 - $\bar{X} = 4 * 10^3$ (1167 shares)

* average of 84985 LOB data

implementation

- $\overline{X} = 4 * 10^3$ (1167 shares)
- we define k*to be the largest integer less than or equal to $\frac{X}{3}$, so that :
 - $3k^* \leq \overline{X} < 3k^* + 3$
 - k* = 1333 and $\bar{X} = 3k^* + 1$
- Case $B: 3k^* + 1 \le \overline{X} < 3k^* + 2$
- $\alpha = k^* = 1333$
 - $\beta = k^* + 1 = 1334$
 - $t_0 = 3k^* + 2 \overline{X} = 1$
- strategy
 - $X_0^A = 1333$
 - purchase continuously at rate k* = 1333
 - $X_{\rm T}^{\rm A} = \bar{X} 2k^* = 1334$

performance

- strategy
 - $X_0^A = 1333$
 - purchase continuously at rate k* = 1333
 - $X_{T}^{A} = \bar{X} 2k^{*} = 1334$ with $E_{T}^{A} = 2667$
- comparison
 - $X_0^A = 1000$
 - purchase continuously at rate k* = 1000
 - $X_{T}^{A} = \overline{X} 2k^{*} = 1000$ with $E_{T}^{A} = 3000$
- performance (ignore fixed costs)
 - our strategy : C(X) = $\phi(2667) + Tg(1333) = 5330667$
 - comparison : C(X) = $\phi(3000) + Tg(1000) = 5497500$

Conclusion

- Type A strategy is one kind of Type B strategy with the intermediate purchase is of size 0
- with density or cdf of LOB and resilience pattern :
 - we can derive the cost function
 - if the cost function is convex : Type A strategy
 - if the cost function isn't convex : Type B strategy
- no risk aversion in this model
 - only focus on minimizing E(C(X)) of the execution
- no discussion about how to use the model in practice
 - measure of F (cdf of LOB), h(resilience function)
- no discrete-time version
 - unlike Obizhaeva & Wang (2005), Alfonsi, Fruth and Schied (2010)

Ref.

- https://www.pathlms.com/siam/courses/2725/sections/3581/video_ presentations/29246
- https://www.math.cmu.edu/users/shreve/OptimalExecution.pdf